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LETTER TO THE EDITOR 

Nonlinear Schrodinger equation, PainlevC test, Biicklund 
transformation and solutions 

W-H Steeb, M Kloke, and B-M Spieker 
Universitat Paderbom, Theoretische Physik, D4790 Paderborn, West Germany 

Received 2 August 1984 

Abstract. We demonstrate that the nonlinear Schrodinger equation passes the PainlevC 
test and construct a Backlund transformation and solutions within this approach. The 
connection with the Hirota bilinear formalism is discussed. Also the Heisenberg ferromag- 
net equation which is gauge equivalent to the nonlinear Schrodinger equation is studied. 

It is well known that the nonlinear Schrodinger equation in one space dimension 

i w, + w,, + aw ( w * w ) = 0, (a ER) ( 1 )  

can be solved with the help of the inverse scattering transform and that there is an 
auto Backlund transformation. For a > 0, equation ( 1 )  has an N-envelope soliton 
solution. For U < 0, there is a dark pulse solution (envelope-hole solution). 

In the present letter we demonstrate that this equation passes the PainlevC test. 
We derive a Backlund transformation and describe the connection with the Hirota 
bilinear formalism. The nonlinear Schrodinger equation in one space dimension and 
the Heisenberg ferromagnet equation in one space dimension are gauge equivalent. 
Hence, we also perform a PainlevC test for this equation. 

Stimulated by results obtained from the inverse scattering theory for soliton 
equations, a so-called PainlevC test for the integrability of a given dynamical system 
was made, i.e. every group theoretical reduction of a completely integrable field 
equation to an ordinary differential equation (ODE) should have the PainlevC property 
(Ablowitz and Segur 1981). This means that the only movable singularities of all its 
solutions are poles. This property can be proved in a straightforward manner (so- 
called singular point analysis) by expanding the solutions into Laurent series and 
investigating whether these expansions contain enough arbitrary constants to cover 
the entire solution manifold of the equation. A review about soliton equations, group 
theoretical reductions and the PainlevC test has been given by Lakshmanan and 
Kaliappan (1981). The conjecture given above can serve (if it is true) to test whether 
a partial differential equation (PDE) or a system of PDE’S is non-integrable. If we find 
that at least one of the systems of ODE’S (resulting from group theoretical reductions) 
does not have the PainlevC property, then we can conclude that the system of PDE’S 
is not completely integrable. On the other hand, if we find that all systems of ODE’S 
have the PainlevC property, then we cannot conclude in general that the system of 
PDE’S is completely integrable. 

Recently, Ward (1984) has introduced the PainlevC property for PDE’S. The system 
of PDE’S under investigation is considered in the complex domain. Let n be the number 
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of the independent variables. Assume that the system of PDE'S has coefficients which 
are analytic on C". The Painlev6 property is defined as follows: if S is an analytic 
non-characteristic complex hypersurface in C", then every solution of the PDE which 
is analytic on C"\S, is meromorphic on C". 

A weaker form of the Painlev6 property was proposed by Weiss et al (1983). They 
looked for solutions of the PDE in the form 

00 

u = 0" c UjW 
j = O  

where 0 is the analytic function whose vanishing defines a non-characteristic hypersur- 
face S. Inserting this expansion into the PDE leads to conditions on n and recursion 
relations for the functions up The Painlevt property here states that n should be an 
integer, that the recursion relations should be consistent and that the series expansion 
(2) should contain the correct number of arbitrary functions. Resonances are those 
values of j at which it is possible to introduce arbitrary functions into the expansion 
(2). Notice that it may happen that more than one branch arises. The expansion (2) 
could, a priori, miss essential singularities. This behaviour is well known for ODE'S. 

If we study the case with more than one field, then the expansion is given by 

Backlund transformations for the PDE which has the PainlevC property can be found 
when a suitable cut-off is possible for the series (2) (or series (3)). Meanwhile, various 
authors (compare Oevel and Steeb (1984) and references therein) have applied this 
approach. 

The motivation of the ansatz (2) (and analogously for ansatz (3)) comes from the 
theory of ODE'S where a necessary condition for 

d"w/dz" = F(z, w,. . . , d"-'w/dz"-') (4) 

(F rational in w, . . . , dn-'w/dzn-l, and analytic in z) to have the PainlevC property is 
that there is a Laurent expansion with ( n  - 1) arbitrary expansion coefficients. Laurent 
series must be obtained near every possible movable singularity type of the ODE. It 
may happen that more than one branch arises. A necessary condition for the existence 
of a sufficient number of algebraic first integrals is given for a class of system of ODE'S 

by Yoshida (1983a,b). He proved that in order that a given system of ODE'S is 
algebraically integrable, all possible resonances (Yoshida calls them Kowalevski 
exponents) must be rational numbers. 

It is conjectured that if a field equation has the Painlevi property then this equation 
is integrable. On the other hand we cannot conclude in general that a PDE which is 
integrable has the PainlevC property. An example is the Harry Dym equation U, = u3ux, 
(Weiss 1983). Another example is the nonlinear diffusion equation U, = ( u-2ux)x  (Steeb 
and Strampp 1984). 

Now let us perform our PainlevC test for the nonlinear Schrodinger equation. We 
put w = U +iu, where U and U are real fields. Then we obtain 

U, +U, +au(u2+v2) = 0 

U, - U, - au( u2 + U') = 0. ( 5 )  
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The Painlev6 test for PDE'S can be performed in the same manner as the singular point 
analysis for ODE'S. First we determine the dominant behaviour. Inserting U - @"uo, 
U - @mu0 into equation ( 5 )  (considered in the complex domain) we obtain n = m = -1 
and the 'expansion coefficients' uo and uo are determined by ( j  = 0) 

2@: = -a( U:  + U:). ( 6 )  

This result indicates that uo or uo can be chosen arbitrarily and therefore r = 0 is a 
resonance. Determining the resonances we obtain rl = - I ,  r2 = 0, r3 = 3, and r, = 4. 
Inserting ansatz (3) into equation ( 5 )  we find at j = 1 that 

(7) 
2@.,UOx + @,U0 - @,U0 2( au; - a:) ( 2@SOX +@,U0 +@,U0 > = (  2auouo 2(au; - @:) 

At j = 2  we find 

uoxx-uo, +2aul(uluo+uluo)+auo(u:+u:) 
Do, +uo, +2aul(u,uo+uluo) +auo(u:+u:) 

At the resonance r3 = 3 we obtain 

- U l x x  +Ul, - aul(u: +U:) +@,u2-@,u~-2@xu2x -2au2(3uou, + U O U ~ )  

- V I x x  - 241, - au,( U :  + U:) - @ , U 2 -  @,U* -2@xu2x -2au2(3uou, + U O U I )  

- 2au,( UOUl+ UOUI)  

-2au,( UOUl + U O U I )  

Obviously, the rank of the matrix on the right-hand side is equal to one, as it must 
be. Inserting uo, uo, uI ,  uI ,  u2, u2 into equation (9) we find that both equations coincide; 
thus u3 or u3 can be chosen arbitrarily. At the resonance r4 = 4 we find the same result. 
When we insert uo, . . . , u3 we find that U, or U, can be chosen arbitrarily. We find that 
equation ( 5 )  has the PainlevC property in the weaker sense. We notice that the nonlinear 
Schrodinger equation in two and three space dimensions does not pass the PainlevC test. 

A Backlund transformation can be found as follows: from the above result (equation 
(9)) we see that uI and uI satisfy the nonlinear Schrodinger equation when we put 
uj = 0 and uj = 0 for j 3 2. Consequently, we insert 

u = @ - ~ u o + u i ,  U = @'-luo + U, (10) 
into equation ( 5 ) .  It follows that 

[-2@@, + 2@: + a ( U :  + u:)]uo + ( -@,U0 + @uo, +@U,, +@,U0 - 2@xu0x)@ 

+[2auo(u,u, + U O U l )  +au,(u;+u:)]@ +2aul(uoul +uoul)@2 

+ [ U1 f + U1 + au, ( U :  + U:)]@ = 0 

[2@@, - 2@: +a(  U:  + u:)]u, + (-@,U0 +@uot - @UO, -@,U0 + 2@xuox)@ 

+[-2au,(uou, + U O U l )  -auI(u: +U:)]@ -2au,(uou, +uoul)@2 

+ [ U l ,  - UIrr -au, (u:  + 0:)3@3 =o. 
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Let us assume that u1 and u1 satisfy the nonlinear Schrodinger equation (4). We choose 
u1 = U ,  = 0. Then equation (1 1) takes the form 

[-2@QXx +2@: + a ( u ~ + u ~ ) ] u o + ( - @ , u o  +Quo, +@U,, + @ ~ u 0 - 2 @ x u 0 x ) @  = O 

[2@@, - ~ @ Z , + a ( u ~ + u ~ ) ] u O + ( - @ , u O + @ u O ,  -@uou-@'uuo+2@xuo,)@ =O. 

When we introduce the Hirota bilinear operators (Hirota 1974) according to 
D;D,"fog := (a /at -a /at ' ) " (a /ax-a/ax ' ) " ( f (x ,  t ) g ( x ,  t ) ) , ,= , , , ,= , ,  

[ - D ~ , @ o  @ +a(  U; + ui ) ]uo  + ( D , U ~ O Q ,  + ~ Z , u ~ o @ ) @  = o 
[D2,@0@ - a ( u i  + U i ) ] U o  + ( D l U 0 O @  - D:uoo@)@ = 0. 

( D:@ 0 @ - p ) = a ( ui + ui) 
( D l U 0 O @  + D2,u0o@) = 0 

( -D,u0o @ + DZ,u0o@ - p )  = 0 

( u2 + U') = p/2  - (In @)xx. 

equation (12) can be written as 

These equations can be decoupled according to 

where p is a real constant to be determined. In particular we have 

To construct solutions we expand @, uo and uo as power series, as described by Hirota 
(1974). Inserting these power series into equation (15) we can easily construct N-soliton 
solutions. 

A comment is in order about the Hirota bilinear formalism. In this approach Hirota 
(1974) introduces new dependent variables as described for the nonlinear Schrodinger 
equation. This ansatz is always motivated by the Painlevi test. When we consider, 
for example, the Kadomtsev-Petviashvili equation 

(17) 2 
U,, + uu, + (U,) + U, + uyy = 0 

the Painlevi test tells us that n = -2, uo= -12@2, and U ,  = 12@,. The cut-off of the 
series (2) with uj = 0 for j 2 3 leads to 

u=@-2u0+@-Iu1 +U, (18) 

where u2 satisfies equation (17). Setting u2 = 0 we obtain U = 12(ln @),. Then Hirota 
(1974) writes down the bilinear equation with the help of @. 

Now we want to apply the Painlevi test to the classical Heisenberg ferromagnet 
equation in one space dimension. This equation is given by 

(19) 

where S = (SI, S2,  S 3 ) ,  S: + S :  + S :  = 1 and x denotes the vector product. We know 
that this equation is completely integrable. The natural boundary conditions are 
S(x, t ) +  (O,O, 1) as IxI+oO. We cannot apply the PainlevC test directly to equation 
(19) since the condition S 2 =  1 is not included. Thus we perform a stereographic 
projection 

SI = s x sxx 

SI = 2 u /  Q, S2= 2u/Q, S, = (-1 + u2 +U')/ Q, (20) 
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where Q = 1 + u2 + u2. The we obtain 

Q U I  + Quxx - 2( Uf - u’,)u - 4uu,ux = 0 

-Out + Quxx +2(uz, - U l ) U  -4uuxux = 0. 

The dominant behaviour is given by n = m = - 1. The resonances are rl  = - 1 (double), 
r2 = 0 (double). At r2 = 0 we find that uo and uo can be chosen arbitrarily. Summing 
up, we find a solution of the form (3) with three arbitrary functions, namely uo, uo 
and @. Nevertheless, we say that equation (21) passes the Painlev6 test. 

The Heisenberg ferromagnet equation and the nonlinear Schrodinger equation are 
gauge equivalent (Zakharov and Takhtadzhyan 1979). Both equations arise as con- 
sistency conditions of a system of linear PDE’S 

* x =  U*, * t =  v* (22) 

where J, = 
condition is given by 

. . , +,,) ( n  = 2) and U and V are 2 x 2  matrices. The consistency 

U,-  VX+[U, q = o .  (23) 

Two systems of nonlinear PDE’S that are integrable by the inverse scattering transform 
are said to be gauge equivalent if there is an n x n matrix g (invertible) which depends 
on x and t such that 

(24) 

Consequently, for two gauge equivalent soliton equations the resonances are not the 
same in general. 

- 1  U ,  = gu2g-l +gxg-’, VI = gv2g-I +gtg * 
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